Avoiding 1-hop neighborhood knowledge in Wireless Sensor Network using 1-hopMAC.

Thomas Watteyne, Abdelmalik Bachir, Mischa Dohler, Dominique Barthel and Isabelle Augé-Blum

IRAMUS meeting, September 15th, 2006.
Wireless Sensor Networks

Far from traditional networks
• No fixed infrastructure
• Changing topology
• Multi-hop communication

Different from ad-hoc networks
• Scarce energy source
• Very low data rates
• Autonomous communication
Sources of Energy Wastage

- Radio budget > 80% total energy budget
- Collision
- Overhearing
- Overheads
- Idle-listening
- Layering approach

→ cross-layering thru layer communication or integration
Neighborhood knowledge

Why?
• No knowledge at all a priori
• Centralized DNS-like solutions not applicable

Know your neighbors

How?
• Periodic Hello packets
• Out of date information…
• Expensive…

Used for Clustering, Energy-efficiency, Routing, …
Assumptions

• all nodes contain a metric f
• all nodes know the deployment-dependent node density *(not critical)*

Simple Energy Model

• $P_{Tx} = P_{Rx}$
• $P_{\text{radio_off}} = P_{\text{sensing}} = P_{\text{processing}} = P_{\text{switching}} = 0$
Energy-Efficient MAC

- coordinated on-off scheduling (synchronization)
- preamble sampling

Micro-frame preamble sampling (A. Bachir et al.)
1-hopMAC

1-hopMAC\textsubscript{basic}

1. \(\Delta t \)
2. \(\Delta t \)
3. \(\Delta t \)

\((T_{\text{max}} - T_{\text{min}}) \cdot \Delta t + \text{TACK} \)

"beaconless greedy routing" (Heissenbüttel et al., 2003)
1-hopMAC_{var1}

- reduce S's listening time
1-hopMAC\textsubscript{var2}

- avoid multiple ACK messages

1-hopMAC\textsubscript{var1}

1-hopMAC\textsubscript{var2}
1-hopMAC\textsubscript{var3}

\begin{itemize}
 \item direct answer
\end{itemize}

\begin{itemize}
 \item \(\Delta t\)
 \item \(\Delta t\)
 \item \(\Delta t\)
 \item \((f_{\text{max}} - f_{\text{min}}) \cdot \Delta t + d + \text{TACK}\)
\end{itemize}
Analysis

Time radios are on

1. 1-hopMAC_{var1} always better than 1-hopMAC_{basic}

2. 1-hopMAC_{var2} better than 1-hopMAC_{var1} iff first ACK received after $t_{thresh} = f_{max}.\Delta t + (2-N)T_{ACK} + 2d$

3. 1-hopMAC_{var3} always better than 1-hopMAC_{var2}

\rightarrow if first ACK received before t_{thresh}, use 1-hopMAC_{var3}
if first ACK received after t_{thresh}, use 1-hopMAC_{var1}
Conclusion

Multi-mode energy-efficient protocol, with a localized and overhead-free decision

Future work

• Simulation and performance extraction
• Analysis to extract optimal value for Δt
• Collision resolution
• Integrating with more functionalities (i.e. self-organization)

Thomas Watteyne
thomas.watteyne@orange-ft.com
http://perso.citi.insa-lyon.fr/twatteyn/
Gradient-based routing

- setup phase
- bounded and known number of hops
- real-time?
Geographic routing

Assumptions:
• node knows its position, its neighbor's, and the destination's
• 1-hop neighborhood knowledge
Berkeley Motes Family

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Microcontroller Type</td>
<td></td>
<td>AT90LS8535</td>
<td>ATmega163</td>
<td>ATmega128</td>
<td>TI MSP430</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program memory (KB)</td>
<td></td>
<td>8</td>
<td>16</td>
<td>128</td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAM (KB)</td>
<td></td>
<td>0.5</td>
<td>1</td>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active Power (mW)</td>
<td></td>
<td>15</td>
<td>15</td>
<td>8</td>
<td>33</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sleep Power (µW)</td>
<td></td>
<td>45</td>
<td>45</td>
<td>75</td>
<td>75</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wakeup Time (µs)</td>
<td></td>
<td>1000</td>
<td>36</td>
<td>180</td>
<td>180</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonvolatile storage Chip</td>
<td></td>
<td>24LC256</td>
<td>AT45DB041B</td>
<td>ST M25P80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connection type</td>
<td></td>
<td>I²C</td>
<td>SPI</td>
<td>SPI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size (KB)</td>
<td></td>
<td>32</td>
<td>512</td>
<td>1024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Communication Radio</td>
<td></td>
<td>TR1000</td>
<td>TR1000</td>
<td>CC1000</td>
<td>CC2420</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data rate (kbps)</td>
<td></td>
<td>10</td>
<td>40</td>
<td>38.4</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modulation type</td>
<td></td>
<td>OOK</td>
<td>ASK</td>
<td>FSK</td>
<td>O-QPSK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Receive Power (mW)</td>
<td></td>
<td>9</td>
<td>12</td>
<td>29</td>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transmit Power at 0dBm (mW)</td>
<td></td>
<td>36</td>
<td>36</td>
<td>42</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption Minimum Operation (V)</td>
<td></td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Active Power (mW)</td>
<td></td>
<td>24</td>
<td>27</td>
<td>44</td>
<td>89</td>
<td>41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Programming and Sensor Interface Expansion</td>
<td></td>
<td>none</td>
<td>51-pin</td>
<td>51-pin</td>
<td>none</td>
<td>51-pin</td>
<td>51-pin</td>
<td>16-pin</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td>IEEE 1284 (programming) and RS232</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Integrated Sensors</td>
<td></td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Based on the Mica mote, these commonly used derivatives are manufactured by Crossbow Technology.
Microframe preamble sampling

• preamble sampling

Micro-frame preamble sampling (A. Bachir et al., 2006)
Chipcon CC2500

• hardware preamble sampling support

Table

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>mA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1</td>
<td></td>
<td>15.7</td>
<td>Automatic RX polling once each second, using low-power RC oscillator, with 460 kHz filter bandwidth and 250 kbps data rate. PLL calibration every 4th wakeup. Average current with signal in channel below carrier sense level.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21.2</td>
<td>Transmit mode, 0 dBm output power</td>
</tr>
</tbody>
</table>

Legend:
- Inserted automatically in TX, processed and removed in RX.
- Optional user-provided fields processed in TX, processed but not removed in RX.
- Unprocessed user data (apart from FEC and/or whitening)